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£, Shallow Water Waves

This chapter will deal with special solutions based on the
shallow-water approximation, following the method of Friedrichs
[1948] as presented in section 104 . The shallow-water approxima-
tion for the waves over a rigid bottom yields a set of nonlinear
equations (qf. 10.32) e¢ven in the first approximation. If these
equations are then linearized thejy result in & hyperbolic type
equation which reduces to the simple wave equation for a flat
horizontal bottom. Consequently the solutions resulting from the
shallow-water approximation are completely different in character
from those resulting from the infinitesimal-wave approximation of
section 10X and chapter D, which resulted in linear equations and
linear boundary conditions. That is, the shallow-water approximation
leads to ncalinear hyperbolic type equatiors, wnereas the infinites-
imal-wave approximation leads to a set of linear equations satisfying
the boundary ccnditions and having each successive approximation to
the velocity potential satisfy the simplest elliptic equation,
namely the Laplace equation.

After the first-order shallow-water approximation (10.32) has

been applied to several problems, then the method of Priedrickc [1948)
and Keller [1948) will be extenried to obtain the second and third
approximations of the shallow-water theory and thereby present, for
the first time, the exact second approximation to the cnoidal wave
of Korteweg and de Vries {1895], and the solitary wave of Boussinesq
[1871]), and Rayleigh [1876]). These higher order approximations lead
directly to relations predicting the maximum heights of cnoidal

waves and solitary wvaves.
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28. The Fundamental Equations for the First Approximatiom.

The shallow-water expansion method introduced by Priedrichs
[1948] is discussed in section 10. For this application the ex-
pansion parameter & was selected so that the first approxima tion
would be identical to the nonlinear equations cf the classical
shallow-water theory, which is based on the assumption of hydro-
static pressure variation throughout and the neglect of the variaton
of the horizontal velocity components with depth, so the complicated
boundary value problem is greatly simplified to the following non-

linear equations:

up + Uy + Wy = g,

Ve 4 U+ W, = -g?z (28.1)
/K + [u'-(7+ h)]x + [W(7+h)], =0
See Lamb [1932]), page 254, or Stoker [1957], page 23.

Upon noting (see Figure 37) that the rigid bottom surface or
rhe undisturbed water depth in (28.1) is designated by
y=-h(x,z)=b(x,z) for the corresponding designation in (10.32), we
see that the (28.1) set of nonlinear equations are identicel to
(10.32) which correspond to the first approximation of FPriedrichs
[1948] shallow-water expansion method as discussed in section 10,
thereby showing that the method has physical justification. It 1is
seen that the higher order approximations following (10.25) and
(10.33} will require that £ be sufficientiy small, consequently,
as will be shown, this expansion method is applicable only i1if the
water depth and surface curvature are small in comparison to the

equivalent of tho wave length of the free surface profile disturbance.
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Thexrefore, in some cases, this shallow water thecry is epplicable
to extremaly large water depths as long as the wava length is
sufficiently long, the most common application being to tidal
waves vhich are the oceanic tides produced by the gravitational action
of the sun gnd the moon, e.g. see Lamb [1932].

The mathematical justification for this shallow-water expansion
mesthod, at least for special cases, lies in the existence proof of
Friedrichs and Hyers [1954] for the solitary wave, and the existence
proof of Littmar [1957] for the more general cnoidal waves. Both
of these proofs demonstrate that this expansion method will &t least
give asymptotic déscriptions of the exact solutions for these
particular problems.

The nonlinear first approximation given by (28.1) is considerably
simplified if the rigid bottom surface h(x,z) is flat and horizontali,
as may be seen by letting h = constant so that (28.]1) may be
written as tp + Wiy + Wu, = -3(7 + h),

Ve + N, + Wi, = -3(7 + h), (28.2)
(7+h)¢ + [u(y + )]y + (W + k)], =0
which is {dentical to the well known two-dimensional gas dynamics
equation, e.g. see Lamb [1932], if we write

f) (x:zat‘) " [7 (x,z,t) + h] (28.3)
..%;'& -503 ";;5 = g = constant
)

Since the iserntropic gas relationship is p = (constant. fr),
therefore the first order nonlinear shallow-water approximation
for a flat horizontal bottom is identical to the isentropic two-
dimensional gas flow having a specific heat ratio of Y’- 2. This
f£s the basis of the so called hydraulic analogy which has been
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used for many experimental investigatioms, &.g., see Stoker [1957}.

I+ must be noted, however, that this hydraulic analcgy is only
valid for a flat horizontal bottom, as may be seen by comparing
(28.1) and (28.2), and even nore important it is valid only as a
first approximation even for the nonlinear case. It will be shown
in section 31 that the second approximation to shallow-water theory
ylelds finite amplitude waves (the solicary wave or cnoidal waves)
that can be propagated withcut a change in shape or form, a fact
which completely invalidates the hydraulic analogy to compressible
gas flow since (28.2), or the gas dynamics equation , predicts that
any finite disturbance quickly forms a finite discontinuity, e.g.
see Lambd [1932] pages 278, 481.

In section 29, immediately following, it will be shocum that
even for the linearized first approximation the hydraulic analogy

to compressible gas flow is limited to a flat horizontal bottom.

29. The Linearized Shallow-water Theory.

The first approximation to shallow-water theory can now be
linearized by two different methods that are suitable for various
problems. The firet methcd is more appropriate for investigating
steady water flow in canals or rivers and conclists of the following

approximations for carrying out the linearization.

u(x,z) = U+¢ = U, w (x,2) =¢, <« U (29.1)
9 (x,2) < h(x,z) (29.2)
so that (28.1) is linearized to

(1- g—zl) ¢xx +";z - Uhy - f‘sthz -0 (29.3)
¢ « gh(x.z) (29.4)

In agreement with the previous discussiom, (29.3) corresponds o the
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linearized gas dynamics equation only if the bottom is flat and
horizontal so h is constant.

The second method of linearization corresponds to the
classical t. 'ul wave theory, or long wave theory, e.g. see Lamd

[(1932], page 254, and can be obtained by writing

u(x,z,£) =gy 1, W(x,2,t) =g, < 1 (29.5)
7 (x,2,t) << h(=,z) (29.6)
so that (28.1) is linearized to

h . | 9.
(515“ +P,e) + (?%x +E'§¢5z) ﬁ¢tt (29.7)

Again, as before, (29.7) corresponds to the linearized gas dynamic
case, or the simple acoustic wave propagation egquation, only if the
bottom is fiat and horizontal. In this case the general solution
of (29.7) for ome-dimensional flow is the wcll known d'Alembert
solution of th: simple wave equation.
P(x,iii - F(x-ct) + f(x+ct) 2.5
C = {kh = constant
which is used to study long wzve length oscillaticns in canals
when the water is either at rest or moving with a velocity of

U< c. The limitation to linearized perturbations and ant h
for one dimensional flow allows (28.1) to be linearized to
#:&t =Y = -87x

-l ]
{xx = gRTee = 2x7ee
and varicus spplicstions of this, including the canal theory of

tides, are given in Lamb [193Z] pages 254-273.

(29.9)

for the case of a canal having a non-rectangu.ar but constant

cross-section, we may generalize (29.9) by letting h be the mean
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depth defined as the undistrubed cross-seciional area (S) divided
by the width (b) of the canal at the undisturbed free water surface,
see Lamb [1932] page 256. When the canal has a variable depth h{x)
and the disturbancc may be considered one-dimensionai, then (29.7)
may be written in tegns of the varying cross-sectional area S(x)

for constant widtk b as follows

éﬁﬂc = o)y " 3 SPx), (29.10)

S(x) = bh(x), b = constant

Thon from (29.9) we obtain

% (871)8 - ﬁ,? e (29.11)

vhich is the same as the expression derived by Green (.1838) for a
canal that is varying in both width b and depth h so that
S(x) = h(x)b(x)
However the exact linesrized first order approximation is (29.7),
and the form of this equation indicates that large valves of b'(x)
would invalidate the one-dimensional assumption, &specially if n,
is relatively large. 7This is also indicated by Lamb [1932] page 274.
However (29.7) provides the rigorous proof that (29.10) is applicable
to one-dimensional, long wave lsugthk, small amplitude disturbances
in a rectangular cross-section canal having a constant width and a
varying depth.

Then if we analyze the long wave lengths having a simple
harmonic oscillation with a frequency of W,2¥, (29.11) reduces to

§ G9xx +“i'§7(x.c) -0 (29.12)
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If ve assume, following Lamb [1932] page 275, tha: this expression
gives a satisfactory approximation to a varying width canal, wben
b varies linearly with x while the depth h remains constant, we

obtan 7 5 "‘l"]x +(‘:)n)»7 =0; c = /E- constant

whose general solution is given by the Bessel functions of zero
crder in the form

4 (x,) -ZL}L{J_:,} + D Yol [AnCosbnt + Bysinéhe]  (29.13)

where in most applications D, = 0 since -Y,(0) == o0 ,

On the other hand if the canal width remains constant, while
the depth varies linearly with x so that h(x) = hof A
b = constant, then there is no doubt that as long as the disturbance
is snall and one-dimensional equation (29.10) is applicable and may
be writter, with C, = r_ = ccnstant, as

x P *@Q? 0

which has a solution suitable for most purposes as
¢(x,c) Z[J (2 @y,L l}") + DpYo] [AnCos Wit + By sinw t] (29.14)

For another rectanguiar cross-section case let h(x)sho{1l ),
b = constant so that (29.10), with Co V gh, = constant, becomes

(1-;.;)f¥:;s - 2 fféf; 1@ + D@ = 0

-l

g 2 2
(n+1) =/l o w1
nee) (T “eb

o
Then i £ ¢ is finite for /x/‘ L, a solution 1ls given by the
Legendre polynomial Pn(x/L), of degree n defining the natural
oscillation frequencies by ‘0291.2 «n(n+1) =2, 6,12, 20, . . .
&,
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¢(x,t) "Zn(f) [Ajcosut + B sinw, t] (29.15)

Thess last problems could be considered as the long perilod
oscillations called seiches which occur in certain lakes or
canals throughout the world. Many applications are presented by
Chrystal [1905, 1906] and the periods observed in several lochs
and lakes seem to correspond to thcse calculated by the linear
shallow water theory. The linear shallow water equatlon (29.7)
should be very suitable for the study of seiches because of their
long period and relatively small amplitude. Usually the complete
equation (29.7) must be sclved numerically vy the method of finite
differences because the contour of the body of water is quite
irregular and the depth variation is important.

There are several simple two-dimensional cases that easily
yield explicit solutions. For exampie, the long period oscilla-
tions in a rectangular tank having a constant shallow water depth
could be obtained by reducing (29.7) to

fox * oz + (Ba) ' - 0

where the prescribed boundary conditions are

¢_r_(30:zst) =0 -Px(olzlt)! %z(xsant) ©0 = %z(xtott)
so the appropriate solution for ﬁ or szould be of the form

> S cos ('."_;?) Cos (a]e) [Ag,Co8ia,at) + By, psindy,at)] (29.16)

-T2+ (o)

Similarly for a circular tank having a constant depth (29.7) may

be transformed into polar coordinatszs (r,9 ) to give



Pre t e+ Ly * () - 0
(29.17)
¢ (r,9,¢t) ZE ,n } [An,nCo8n0 + By nSin n@][Costyy o t+D,  sirdh t]

The Y, solution being omitted because it becomes infinite at r = 0.
The admissible values of "’m,n (wvhich determine the natural frequen-

cies of oscillation) are defined by the boundary condition

Pr@,0,t) = 0 = 3 (“h,n,) tcun<g> or
b2 5= (Bana)  om

n-l; 3' n+1é_é_ 3 for n >0, and

J]_?_’F} OOrgums-aasz 7.016, 10.17, . . . .

for n = 0 which corresponds to the symmetrical oscillations.
The Y, soluticon, which behaves as (r®Inr) as r approaches
ze:vo, 18 required for any ring type body of shallow water. For
example an island in the center of a circular lake, or lagoon
formed by an atcll would require that the term Jy in (29.17) be

replaced by the complete general solution of Bessel's equation of

order n, namely, [Jp {%,_q ¢ *+ En¥n p.en r) | (29.18)

80 as to be able to satisfy the ring type boundary conditions
95,,(.,0 t) =0 "}ér(b 0,t) or,

afna) + Bt Gpn ) -
o Ega 3”‘“"{-4*5“3”

Consequently the ring type boundary conditions are satisfied only
by the particular values of (4, , defined by
'
Iy = Jn (fh,0) _ Iy (B a;n) (25.18)
ﬂ— . L]
Ya (&h,n) Y;';(é “a,n)
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These values of (a)"n correspond to the natural frequencies of the
lon§ period oscillation of the ring shaped shallow body of water.
As a final example of two-dimensior:l seiches we analyze the

long period simple harmonic oscillation in a shallow circular basin

having a depth variation dependent only upon r so (29.7) transforms

into polar coordinates as

2
%*lér"'l ’99"‘%“1-'*0 $ -0 (29.20)
Lamb [1932] page 291, has ahovm that the solution for a parabolic
depth variation h(r) = h, (1 - E;_) is given by
b (r,0,8) = A,(P" ;},‘,‘3( ; ;i’j} @,t) Fk .46 X’ (29.21)

vhere F represents the hypergeometric series

r-[1+ _éd) +o<{ﬂ:z}l%(p"+......}

2 2
with .ﬂ a* = n (n-2)-m
gh

O
<~ 1/2 m+0),8=~1/2@2+m-n))f = (m+1)

For the symmetrical mcdes (m = 0) this solution reduces to
, 2
ﬁ (r,t) = Z(AN cos WLt + By sincwput) F(N, 1-N, 1, fﬁ )

Po=1- l(«:-‘rv(ﬂz-y.&l?._".z@;:}).ﬂ'_zl (f)“- c o e o] (29.22)

\
‘1{ al = LN(N-1) = 8, 24, 48, 80 . . .
gn,

it is interesting to compare these long psriod oscillations
(A>>h), wherein the Iluid particle motion is approximately
independent of the depth y, with the short period oscillations
(A< < h) which have a direct dependence on v. For example
(23.14) would reduce to (29.16) as (y + h)—> 0 since coshy-—»1

and tanhy . 3y as y-»0. Also

" .W, (Mh » [1.@{3_1!1) + o . ) =Tgh1 + 0(%)21
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Similarly (23.15) would reduce to (29.17) and (23.16) would be
equivalent to the additional results given by (29.18) and (29.19).
This exact agreement of the iinearized results in the limiting
case is encouraging justification for both the shallow-water
approximation and the infinitesimsl-wave approximation since they
originate not only from different physical considerations, but
also by entirely different mathematical iterations a3 discussed
in section 10. The shallow-water approximation leads to hyperbolic
type nonlinear equations, while the infinitesimal-wave approxima-
tion deals with linear slliptic equations. Stoker [1947] page 32
glves & detailed comparison of the two linearized approximations for

the case of omz-dimensional flow over a flat bottom at a 6° slope.

29- ¢¢ Linearized Shallow-water Theory Applied to Two-Dimensional
Steady Flow.

The first method of linearizing the shallow-water theory,
as given by (29.3), would be applicable to the determination of
the variation in water depth for the steady flow in a shallow
open channel or river. However, in practically all cases, (29.3)
must be solved numerically so it does not entail a prohibitive
amount of extra labor to solve the more exact original noalinear
firrt-order equation (28.1) directly ueing the methods discussed in
the next section (30) on nonlinear first-order theory. As a
natter of fact, for supercritical flow defined by U > FE, the
method of characteristics is vary easy to use in the numerical
solutian of the flat bottom nearly horizontal open channel having
a varying width, as shown in section 30. The subcritical case,

having a flow valocity severywhere (Vgh, can bs satisfactorily
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approximsted by the one-dimensional hydraulic theory which
assumes that the velocity at each cross-section S(x) is indepen-
dent of y and z. This method of course would yield a constant
depth over a given cross-section and would therefore not be
satisfactory for predicting the rise in water level about an
1sland, or a jetty, or a pile in a swiftly moving relatively
wide stresm. For this particular application the linearized form
of (79.3) is very useful, especially for subcritical flow.

We now consider the application of (29.3) to the problem of
determining the water depth variation about a two-dimensional
cylinder that is perpendicular to the bottom and has a narrow
cross-section parallel to the flow as shown in Figure 38, If
the bottom is approximately flat and horizontal everywhere near
the vertical cylinder, then we may consider h as constant and
write (29.3) as
F:zgﬁxx +?Szz = 0 or ___ﬂa +--—;3E’ -0

O 9((53) (29.23)

/5 - (1-F%) = (1- Y ﬁ = constant > 0
The fundamental solution of (29.23), in view of (29.1), for

two-dimensional profiles that may be considered symme.rical
ebout the z-axis as shown in Figure 38, is

¢(x,z) - +__;_ /f(f) ln V(x- ;)2 (f!)..'z)2 d;
SN AL /%?%z% .20

e é'#/cx- ) +<;L)

in Pigure 38, is
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( )
_&9 ;t_g_!‘ ?b A féz (1 + 0(“6” (29.25)

U+ ¢x(x’zo)

vhere the same linearization procedure has bveen applied to the
boundary condition as was used in deriving (29.3). Therefore
(29 24) may alsc be sinilarly linearized by writing

uiZe =P (x,20) -@/fcg) (-L)
1+(*

so, 1if we let x - g = p, then for 205‘Z
_ (“s.)
U;;'Q' 7%— ] J (x- ﬁzov)dp -/5 f(x) + O(z o)
_(_(._ ) 1+ p 2.
Therefore f(“f) = (EU) z! (%) + 0(z2) (29.26)
go that the linearized form of (29.24) is
L
,,gxﬂz). -{1+1/s x-gsz(;)d§]_1+£
s (x=5)2+ (p? (29.27)
wi(x,z -}zj}fzf,(f)df -¢5z

;)T Hpen? T
On the actual surface of the two-dimensional profile (29.27) may

be further linearized to x-

w(x,zg) = 1+ L1 [ Lim / /3(}' ) d§
Tk €»0 ) ytre (x-%)

w(x,z,) = z3(x)

T—

On the other hand, for large values of z and x~0 we may write

(29.28)

A&ZOO) ’G{;[ £3.(5)ap = I+5 [J::) j”] (29.29)

L

er’;w) ﬁ-_l__‘{ (§)d§ [} ;[/i '?J (O)]
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The change/?[’(x,z) in the original constant water depth n can
then be determined by the linearized relations corresponding to
(29.1) and (29.2) as

(x z) ¢ 2 27
y é*'ﬂ + 0(112_.)2 -2 -(%2) +o0 ¢x)J (29.30)

vhare for any (x,z) we obtain fé“ and @, from (29.27). The term
¢z must be included in (29.30), although ¢x must be omitted in
order to bs consistent with linearized theory, for appiication to
large values of z since (29.29) shows that (¢ ~ 1/z) whereas

(?5 ~1/zz) for large values of z. However for small values of z
the temm ?2 must also be neglected. For example, on the surface

of the two-dimensional profile (z = zo) (29.30) reduces to

4215‘_;‘,)_--02_1_ m? /_; (E)d$+0(5)j (29.31)

€20 0 X+6€
s1nce¢ md z are both of 0(2')

These relations are of course completely restricted to flows

that are everywhere subcritical since (29.23) shows that the
Froude number (F = U/ m) must be everywhere less than unity to
keep /B? 0. The effect of increasing Froude number is to increase
‘#x» and therefore dccrease/? , 8ince /b decreases. It is seen that
this effect incrvases as z increases, the greatest effect being on
¢x~ llfg 3 in the limiting case of very large values of z as
shown in (29.29). ' This relation, or preferably (29.27), could be
used to predict the additional change in Az(x,y) due to a finite
stream width by using the increment of 5&,‘ from one mirror image to
represent the first approximation to the channel boundary wall as

indicated in Figure 38. For slender cylinders in a narrow channel
the "one-dimenaional" approximation of section 30-7 is gcnerally used,
this allows an approximation for frictional head loss which becomes

relatively more important as the channel wisich decreases.
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For supercritical flow (F = U/’Eﬂ 20, (29.23) must be

written as

B - =0 or
?5"" 2z g—i,(p {29.32)

- (l"2 -1) = (EF - 1) = constant

Now, however (29.32) cannot provide a satisfactory approximation

of the change in water depth at some distance from the two-dimensional
profile since its general solution is

cf(x ,z) = G(x-Bz) + g(x + Bz) (29.33)
which predicts no change, even upon approach ng infinity, along the

lines of constant slope dz/dx = * 1 - V:F
1

Csnsequently the nonlinear methad of characteristics, as will be
described in section 30, must be used in predicting the depth
variation at any finite distance from the profile. Although the
method of characteristics will directly and easily give thevelocity
distribution or depth variation on the profile itself, we will now
derive the linearized variation valid on thc profile surface. The
result will be of crucial im~ortance in evaluating the validity of
the nonlinear first-order shallow-water theory (28.1), since any
great discrepancy between the linearized result and the nonlinear
results from (28.1) would indicate that the perturbations involved
are sufficiently large that the second-order shallow-water theory of
section 31 must be introduced.

The linearized solution of (29.32) for any sharp-nose slender
tvo-dimensional profile, as in Figure 38, is obtained from the

general solution (29.33) and the linearized boundary condition

(29.24) as follows: z:)(x) = ¢z(x,zo) = -!Brc_' (x-Bzg); z=2, 7 O
U
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]
therefore G (x-Bzp) = - % zé(x)
8o that on the profile surface (z = z,)
' ]
u(x,zg) = U +7”x = U +G (x-Bzg) = U[1 - zg(x)]

0 (29.34)
w(x,z5) = Uzy(x)

Then the variation in water depth on the profile surface is given

by (29.30) as

(x,2,) . E:Z [ z;(x) + O(z;)zl (29.35)

For flow that is everywhere supercritical so B = (Fz- 1)70

It should be noted that (29.23) and (29.32) are identical to
the linearized potential equations for two-dimensional steady sub-
sonic flow and supersonic flow respectively if we simply replace
the Froude number (F = U/u_s—h) by the Mach number (M = U/C),
see (28.3). This is in complete accord with the statement that the
hydraulic analogy is valid for the flow over a fiat horizontal bottom
(vhich is equivalent to the two-dimensional isentropic flow of a
fictitous perfect gas having a specific heat ratio ofa"- 2).
Consequently equations (29.24) through (29.29) are identical to the
subsonic flow about slender two-dimensicnsl profiles in free air or
in a rectangular cross-section wind tunnel az derived by Laitone
(1946] . These equations confirm the known result that the linearized
equations are indepsndent of the value cf the spacific heat ratio ?“.
Similarly equation (29.34) is identical to the well-known linearized
two-dimonsional supersonic flow solution if we let

- 1) e B%- M2 - 1)) 0.
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Although these linearized results are very satisfactory for
slender sharp ncse profiles, they only apply for Fioude numbers
that are not too near unity. That i3 they &re not applicable to
flows near critical (U -ﬁ « ¢, equivalent to sonic flow).

For these csses we must return to the nonlinear equaticn (28.1)

as discussed in section 30.
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20 - Nonlinear Shallcw-water Theory.

This section will primarily discuss methods for obtaining
solutions of the nonlinear equation {28.1) which provides the first-
crder approximation of the shaliow-water theory. The special cases
to be considered are the one-dimensional unsteady flow and the two-
dimensional steady flow in open channels. This will provide a basis
for discuseing the one-dimensional assumption of open channel flow.
Finally the hydraulic jumps, and their relation to the firast-order

shallow-waiar theory, will be discussed.
30 «¢ - Cne-dimensionai Non-steady, F'irst-order, Shallow-water Theory.

By assuming one-dimensional flow in the x direction only, the

nonlinear equation (28.1) reduces tc
u, +uu, +8 (’2+h)x = gh,

(/7 +h), + [u(q-i-h)]x « he =0
again it should be noted that these are equivalent to the gas

(30.1)

dynamics equations upon introducing (28.3), only if the bottom {is
flat and horizontal so hy = 0.
Now 1f we let
¢2(x,t) = & [ (x,t) + h(x) ]
2cc, = 3(/’7-0- h), (30.2)
2ccy = 3(4? + h),

and give the initisl conditions as du/de and dc/dx along a space
curve defined by x(x ), t( ), then we mey write (30.1) as
u(uy) + (up) + 2c(cyg) + 0 = ghx; c{u,) + 0 + 2u(cy) + 2(cy) = 0

x, () + 6 (ug) +0 + 0= %%( (30.3)

0 + 0 +x,(cy) + ¢ty (c) =
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This set of four equations can be solved uniquely for u,, ug,
cy, Cy a8 long as the determinant of the coefficients in (30.3)
does not vanish. Consequently this necessary cendition is violated

along the characteristic curves x(x), t(o) defined by

u 1 2¢c 0
c 0 2u 2
= 0 (30.4)
X t, 0 0
0 0 X o t

vhich may be easi{ly expanded by the minors of the bdttom row to ‘obtain
[x°<2 - 2ux_ ¢ + (ul -cz)t“ 2 .

» {xo(- (u -c)to(] (x_ - (u+e)t ] =0

Therefore the characteristic curves are defined by

X/t = (g%‘)cf,: fu(x,t} + c(x,t) ] (30.5)
Since hy 18 given, and appears only on the right hand side of the
first equation in (30.3) therefore the characteristic curves as
defined in (36.5) are identical to those in the gas dynawmics case,
e.g. see (;ourant and Friedrichs [1948). However, the Riemann
iavariants, or qga:ntities that can be constant along a characteristic
curve, now deoenél upon the bottom slope as may be seen by adding the
twvo equations in (30.1) after introducing (30.2) so as to obtain

(u +2c)t+ (u + ¢) (u+2c)x-gh.x-

0
=I5t

These give the same Riemann inveriants as in the isentropic one-

5 (30.6)
+ (u + c)'é—f [u (x,t) + 2¢(x,t) ]

dimensional unsteady gas flow with a specific heat ratio of X'- 2
only 4f h, = 0, e.g. see Courant and Priedrichs [1948] pege 87. No
simple Riemann invariant involving only u and ¢ is possible if h_

varies with x, however if h, is constant, s0o gh, = m = constant,



then (30.6) may be written

[7%+(u+c)3&x]{u+2c-mt]-0 (30.7)

Similarly, by subtracting the two equations in (30.1), we obtain

[ ?él.+ (u-¢) 2 ) {u-2c-mt)] =0 (30.8)
t 2x

Consequently the basic statements relating the characteristic
curves and Riemann invariants of equation (30.1) with gh, = m = constant
nay be sumarized as follows:
(a + 2¢ - mt) = R(x, t) = constant along a curve C,
o (8x\ .
defined by (‘:IE) c (u + ¢) (30.9)
+

(@ = 2¢ - mt) = -8(x,t) = constant along a curve (_
dx - -
defined by (TE \ ; (u - ¢)

Figure 39 showa typical sats of curves in the (x,t) plane. The above
equations show that in any given region in the (x,t) plane there are
thres basic types of solutions, namely:
(1) The constant steady state in which u and ¢ remain constant
everyuhere in the region so all characteristics form straight lines,
(2) The general flow in which neither R nor S is constant in
a finite ragion,
(3) The special csse of & simple wave over a flat horizontal bottcm
(m = 0) wherein a constant steady state region is separated
from a varying region by a straight characteristic line alang
which either R or S, is constant,
The first type solution obviously has R and S constant throughout the
region only {f the bottom is tlat and horizontal (m = 0). The second
type of solutiou is complicated and can best be obtained by the method
of finite differences, e. g. see Stoker [1957] pages 293-300. The
third type of solution will now be discussed since it has ccnsiderable
physical significance for many problems concerning the propagatior of
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a disturbarce into water that is originally at constant depth and
conztant velocity, and extends an unlimited distance for x » 0.

When a disturbance moves into still water at constant depth
over a flat horizontal bottom (m = 0), then it is obvious that
(dx/dt), = c(e0) 18 the characteristic, which is now a straight
line, that must continually separate the steady state region from
the disturbance region in the (x,t) plane as indicated in Figure
39. This characterisiic curve must be a straight line since there
is a constant steady state always ahead of it so that (dx/dt), =
constant and therefore x, = c(°2)t. Also either R or S must be
constant along the characteristic, and since R, corresponds to C:
or (dx/dt), = c(e0) > 0, as in Figure 39, therefore R, = 2c(o0)
= constant. This type of smple wave having (.gﬂé.)o = c(c0)> 0
and Ro = 2¢c(c0) = constant 1s called a forward-facing wave since the
particle paths enter from the side with greater values of x, as in
Figure 39. The value of R varies on each €, characteristic inside
the regicn of the disturbance since u and c¢ both vary dlue to the
di sturbance and none of the €, characteristic lines can ever inter-
sect Cg_. However, every C_ characteristic terminates at CQ, as shown
in Pigure 39, and since S remgins constant on any given C. character-
istic curve, therefore S is everywhere constant since every C_
characteristic must have the same vaiue S(x,t) = Ro = 2c(o00; = constant
on C;c:_ .

The same considerations are true even if the steady state constent
depth water into which the disturbance is being propagated is flowiug
vith & constant velocity u(oo) <c{o¢). The only change is that now

the following are constant,

S



E-21
(ﬁ“—t- - [u(e) + c(o0)] » 0, Ry = [2c(59) + u(e©)}] on Q] only,
(o]

while on all ¢_, [2¢{x,t) - u(x,t)] = S(x,t) = {2c(o=) - u(eo)] =
constant, Similarly all R in the disturbance region vary as

R(x,t) = [2¢(x,t) + u(x,t)]

as indicated in Figure 39 for the simple forward-facing (Cg) wave,
.Ajﬂsb?w? in Figure 40.a sipple backward-facing(cg)occurs 1f R=coustant
& aa‘%%:;e waves are called simple waves because all the characteristics
of the family which has the Riemann invariant take on a different
cuanstant for each line, must form straight lines. For example,
referring to Figure 39, the forward-facing waves (dx/dt > 0) have

S(x,y) constant everywhere and R(x,y) varying so the C_ characteristics
form straight lines. On the other hand in Figure 40, the backward-
facing wave (dx/dt ¢ 0) has R(x,y) constant everywhere and S(x,y)
varying so now only the C_ characteristics form straight lines. The
characteristics of one family only must form straight lines in a simple
wave because only one of the Riemann invariants (S or R) is constent

in the entire region of the disturbance. For example, in the case of
the forward-fecing simple wave in Figure 39, we have S constant in

the region of the disturbance. Therefore from (30.9) and Flgure

39 we may write,

=Sy = =Sy = -S3 = -8, = (u; - 2c1)-(u2-2c2)-(u3-2c3)-(u4-2c4)-constant.
Ry=Rq=(u; + 2¢i)=iujt2cs) $ Ry = R, = (uz < 2cy) = (ug + 2cy,)
Consequently, uj = uj, C; ® C3, Uy = U4, Cy ™ C4, and

u; ¥ uy, €1 ¢ co, U, ¢ w4, c3 # c4 80 that

(&gt = (\31 b cl) "' (uz = CZ) * ccnetant, 80O ~. is curved
c

(gﬁ/Lg = (uy + c1) = (u3 + c3) = constant, 80 G} ie straight

(g%) - (“2 + CZ) - (ug + °4) = constani 8O C+ is straight.
C
+
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It is important to note that these simple waves can exist only

over a flat horizontal bottom som = 0.

We have now shown how the method of characteristics for one-
dimensional unsteadvy flow has resulted in the concept of the simple
wvave which quickly gives a numerical evaluation of the propagation
of a one-dimensional disturbance into water at a constant depth
that is moving at constant speed. The solution of this problem
in the (x,t) plane can be cbteined by direct: appiication of (30.9).
Foxr example, the usual case of a forward-facing wave having S every-
wvhere constant, and straight C, characteristic lines, as shown in
Figure 39, has the slope of the C, straight lines determined directly
by the time history of the disturbance at x = 0, and equations
(30.2) and (30.9) which show that

(%XE - = u(0,t) + c{0,t) = constant = u(C,t) +Vg[h + 9 (0,t)] ‘(30.10)

and along any given C,_ straight line having this constant slope

R(x,t)c+ » u(0,t) + 2¢(0,t) = constant = u{0,t) + 2Vg[h+ Q(O,t)]‘
(30.11)

Consequently the values of u and ¢ are determined in the

entire region shown in Figure 39 by the given valuss on the t-axis.
The curved C_ characteristics need not be calculated, since the
desired numerical solution is independent of them. Their existence
however can lead to a simplification in the numerical calculation of
(30.10) since, in the case shown in Figure 39, each curved C_ char-
acteristic extends from the C_?_ characteristic to the t-axis, and on
each and every C_. characteristic, -5 ~ [u(c2) - 2c(oc0)] = constant.
Therefore at every point on the t-axis that can be reached by a C_
characteristic we must have

§ @ [2¢(0.t)-u(0,t)) = [2c{o0)-u(c0)] = [2 ’F- u(co)] = constant
(30.12)
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Of course the c_ characteristics can continue from 02 to the
t-axis only 1if (‘al%)c- - (u - ¢)<0, ?r u<c, so that in this
case (30.10) may b; simplified to

‘%g)q = u(0,t) + c(9,t) = constant =
\(. « G4 (30.13)

~[(3/2)u(0, ) - ute0)-2¢(=0)]] = {(:a/auco,t)-a/axcoonf;’i-
eh

= [ 3¢(0,t) + [u(e0) - zc(oon} « {3/glh +4(0,1)]1" +u(oo)-2 J;
Consequentiy the problem is solved in the region sc defined 1if
either u(0,t) or c(0,t) is alone given. The surface elevation

would be given by (30.2) as

h "“7(1:':) = &gmg- , h= S_Z_éoﬂ = constant (30.14)

in every case of disturbance propogations into a constant water deoth
over a flat horizontal bottom som = 0,

Many other physical problems can be simulated by giving the data
along a prescribed curve (x,t) for x = 0, e.g., see Stoker [1957]
where the disturbance created by the breaking of a dam, and the effect
of moving a vertical end plate in a rectangular cross-section tank
of still weter, u(e) = 0, are considered. Since the bottom is flat
and horizontal and m = 0, all of the equations following (30.9) are
equivalent to the gas dynamics equations with a specific heat ratio
of XL- 2, consequently the problems in firnite channel lengths which
produce wave reflections at either end. az solved in Courent and
Friedrichs [1948]), are also applicable. In this hydraulic analogy
to comprassible flow it is important to note that (30.13) is only
epplicable to subcritical flow, which is equivalent to subsonic gas

flow, since we must have (?t} = (u-c)<0, or u(ce)Lc(oe) = ygh.
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When the flow is supercritical, so that u(eo) 7 c(o0) -m
correspending to supersonic gas flow, then the slope of both the
C4 and C, characteristics are negative. Consequently the two
Lamilies can meet in a cusp, and the C. characteristics cannot
intersect both the t-axis and the undisturbed steady supercritical

state that lies at, and to the right of, Ci. Therefore, in order

to apply (30.13) for supercritical flc

e
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value of S, as given by (30.12), must be very carefully defined.

Another limitation on all the preceding equations is indicated
for the. compreesion wave depipted in F:igures 39 and 40, This
limitation 15 defined by the envelope of the straight characteristic
lines that must always form for a compression wave in this first
oxrder theory, av will be proven later. This envelope of the straight
characteristic lines corresponds to a discontinuity that can be
interpreted as a disccntinuity 1n4?, or the breaking of the wave
crest. This leads to the hydraulic jump or surge that will be discussed
later. The gas dynamic case has the envelope of the streight character-
istic 1ines interpreted as a stgady-state ashock wave, e.g. see
Courant and Priedrichs [1948] pages 110-181.

BO-ﬁ,- Two-dimensional, Steady, Supercritical Flow by the

First-order Shallow-water Theory.

We will now investigate the characterisftic curves of the noniinear
equations of the first-order shallow-water theory for the case of
steady two-dimensional flow. We will find that real characteristic
curves, that are a great aid to numerical calculations, exist only

in the regions wherein the flow is everywhere supercritical.



E-25
If we consider the steady two-dimensional flow over a flat

horizontal bottom, then we may write (28.2) as

uw, +wwy = -g(n + Lol - -<© (30.15)
[u(? + ho)], + [W( A+ hp)} = 0= (uc?) + (wcz)z “ 0

u =, w=dy, up =y =y,
By muitiplying the firs't equation by u = §, and the second by w = Gz,

and adding, we obtain
(920 + 20,805+ U9, ) = - 192D + 95(cD), ) -

- [y, + 957) c?) (30.16)
Thexefore
92 _ ¢.f ¢2
—5 - 9., t+ 2 *x¥2z + _
(ﬁ ) el o Oxz (-‘;; 1) d,, =0 (30.17)
or,

2 2 |
(1"-;-1? )axx - 2 c%l gxz + (1 = :-:'z )azz =0 (30018)

where cz(x,z) = glh, + "7 (x,z)] and h, now is the still water depth
f ound whenever (u2 + wz) = ()= ”? . Note that (30.18) immediately
linearizes to (29.3), so the numerical differences between the
solutions of (29.3) and (30.18) will provide an estimate of whether
or not the second-order shallow-water theory, as discussed in section
31, must be introduced.

The characteristic curves of (30.18) may be found in a manner
similar to that us.ed for (30.3) by finding the space curve [x(«),
z(cx<)] along which prescribed values of §, and §, cannot determine

Pyx> Ixz+ and §,,. Therefore we write
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2
(1"":'2')9,(,( + (-2 ﬁ)gxz + Q- f’i‘)azz =0

30.19)
(x MWyx * (zarMyz +0 = g(a,o (
o

d(9y)
dex

0 + (x, )0x, + (zg)035 =

which may not have a solution if the determinant of the coefficient is

zero, that is 1if

“ we
1-%)  C-nyy  (1-%)
(%o ) (z, ) 0 =0 (30.20)

0 (x.. ) (z.. )

or,
u? 2 uw w2 2
(1-:2)(7.“) +(2-c—2-)z°,xo,+(1-'g)(xd) =0
2 . 2 —

d &)+ P -1

'E":o, - ?Iz‘zg')¢+ - [—? 2/ (30.21)
’ G- 1)

which therefore givas the slope of the two families (c, and c_) of
characteristic curves. Now however, entirely unlike the previous
one-dimensional uniteady flow soiution, the characteristics curves
exist only for supercritical flow so that (u,2 + wz) > c? - g(ho+7).
The fact that the characteriatic curves are real for supercritical
flow means that in this case the nonlinear equation (30.17) is
hyperbolic. However for subcritical €low, since the characteristic
curves are tnen imaginary (complex) functions, it is of the elliptic
type, e.g. see Courant and Friedrichs [1948) pages 40-55, or
Preiswerk [i938].

We can obtain a solution for the variation of the quantity

F(x,z) -{!_2:# e 1 (30.22)




(Which defines the Froude uwumber of the supercritical flow) along a

chavacteristic curve by transforming (30.18) into the hodograph (u,w)
plane through the use of the Legendre couiect transformation which is
given by,e.g. see Courant and Friedrichs [1948) page 249 or Preiswerk

(1938} A e (xbe+ 28, - ) = (xu+ 2w - @)
d% - (xdu + udx + zdw + wdz - df) = (xdu + zdw)
therefora X = },u’ z -;1’". dx = x du + x.d, = ')( yuu + /qudw
dy = z,du + z_dw =X uwdu + /dew.
Solving for du and dw we obtain
du = 1/¥ (X ynedx <Ypdz) = 8, = (Bdx + 9, ,dz)
dw = 1/N ( ‘A ypedx + X yydz) = dfy = (§,,dx + §,,dz)
vhere N = | uy '}uwl
¢ 0

Xuw  Kww
so that Oy = l 2—? 9., =
and therefore the nonlinear cqmcion (30.17) in t.ho physical (x,z)
plens is transformed into a lincar equation in the hodogreph (u,w)

plane, as given by

(g_;_- 1)3( au - 2 .;I‘!." &uw + (lc% - l)x'; 0 (3G.23)
c

The sameé procedure as used in (30.19) through (30.21i) or a simple
comparison of (30.17), (30.21), and (30.23), shows that the character-
stic curves of (30 23) in the hodogrnph (u,w) plane ars defined by

5:"‘ '(%2" ( Kyj)__- : (30.24)
Ak B G 3

The chsracteristic curve [". in the hodograph (u,w) plane is

~—_

orthogonal to the characteristic curve (4 in the physical (x,z)
plane if we superimpose the two planes so that the valocity vectors
coincide. This may be easily shown by rotatirg the axes for (30,2l)and



E-28
(30.24) 80 that w = 0 (see Figure 41 ), and the equations for the
slopes of the characteristic curves C + and . simplify to

d -___]_-__«_ - - - 1‘_/ dw \
(3%)“_ vi_z-_"l* 1%:1’2 -1 (@ ‘r_ (30.25)
2
c

Similarly r -'4- is orthogonal to €. when the planes are superimposed
&0 the velocity vectors are coincident (see Figure 41).

Equations (30.24) and (30.25) show that along any characteristic
curve there exists a simple solution which is indeperdent of the
boundary conditions of a particular problem, since we can directly
integrate (30,25)

/ - _-uz-ﬁ__ 2 .
&) (R E A

C

for axes rotated so w = 0 (dw = ud@), see Figure 41, We thereby
integrate* (30,25) as

[do--/‘/ﬁz-1 .dg..-[VrZsz
u
- r- © r. 1""% .

J4 ola (V3 can”ly 5 o- tan” Yr2-1') = £(F) (30.26)

Consequently (30.26) provides s general solution, independent of

the boundary conditions in the physical plane, for any two-dimen-
sional potentisl flow that possesses the property of having simple
wvaves in the given region so that the velocity vector follows [ -

in the nodograph plare. The numerical values from (30.26) are

* see (30.27) and (30.29) winich show that with w = 0

< 2 -2
g! . - - - 4 co P FdrF . ¥ d!
u ui - pl U B P(1+7%,)
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indicated in Figure 41 end are tabulsted in Table I (taken from
Preiswerk [1938].

The useful relation between ¢ and (u,w) that was used to
{ntegrate {30.26) and calculate Table I 1is obtained by ultiplying
the first equation in (30,15) by dx and the second ec .tion by dz,

and then adding them so as to obtain
u(u!dx + “zdz) + w(wxdx “+ wzdz) - - [(cz)xdx + (cz)zdz]

udu + wdw = - d{c?) - - gd?)
1/2 <u? + W) + c? = constant = 1/2(u? + v*) + g(b, + ) (30.27)

Therefore

(“25"2) +c? - (9-2"-21’3) +g(hy +1 ) =

c (gny - @D, - G o) = 1g+c - 49
vhere (see Figure 42) ho is the still water depth {(or stagnation

total head depth) that corresponds to (ug 4 wg) =0 = ’70,
(u2 + vz)m is the limiting resultant velocity squared that is

(30.28)

approached when the flowing water depth approaches zero (7—v -h;),

and cy 1s the critical (F=1) speed when the resultant velocity

Vué 4+ wt = ¢, is critical (F=1), so that

—

1 ‘ ] 2
x = (3o 47> = Y@/ ¥eo) '\((2’33[55‘-+ stoct 7o) =
- 2 2
‘((1/3)\‘; +wd) / (“*) - °* =2/3 = -2 ﬁ%*

--1/3, (‘_’gg—) 2/3, (“ +"'2) (30.29)

2
S8y .%-(1+9-2—*#) - Q1 +§—) '<-9)(*‘) ~(3/INZE = h"

c




2
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2
? - () x) 02 ( e

c —2
R (30.29)
2 -
P2 = (.‘}.zi_“'_z.)-(—ﬂ) 23 ;’ 3r2 " ' cont'd
* ci ] \S» !_ 2+F2 J’

-----

It is very useful to note that equations (30.26) through (30.29) may
all be obtamed directly from the +rwo-dimensional isentropic gas
flow equations by simply letting the specific heat ratio X' -2

and F = N, !-X-:' l(* : e.g. compare with Courant and Priedrichs [1948],
as had been nrsviously shown by Preiswerk [1938].

The Riemanu invariants for the characteristic curves (C,, c.)
will now be determined. First we can show that the velocity component
normal to the characteristic curves is always the local velocity of
the shallow-water wave éropasntion, c(x,z)., by writing (30.21) as

2,422
(udz - wix)2 = dz[(dx)z + (dz)2j = c (cn;\)c+
- (4 12

since the relation between the normal direction (n), and the tangen-

tial direction (A) along the characteristic curve (C,) is given

by (see Figure 41) dx | _/dz ) (4 - - (94X
Similerly, 1if /u {s the tangential direction along C.»

cz-(u__. -wa) -(Gxn-l'ﬂ,zn)c (')
du
Also, from Figure 4l and (30.21)

tand-(‘g)o.o +—L—— sin & -1l . *%

C+' - Vr!-l ! T (30.31)
wvhere q is the resultant veloscity magnitude so
2 = (uz-wz) = (.A + cz) - (O}U + ¢c2); 6 = tan 1(5)
u=gq cce @, w=q sin 0, fn-c = q sin (30.32)

‘5,\ =qeosx =0,
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Substituting (30.31) and (30.32) into (30.21) and (306.24) we obtain

-
(%§ZL+ - sgg;g55%§;2 s t!poc

= tan(® t o¢) (30.33)

cos 6 1
_ = linzoc
f cosgein @ 4 L
aw o7 sim® o tanoc = « cot(® +o¢ (30.34)
=t 8 sin®

Therefore, as nroven before in (30.25),

(§)G+(g§)r_- B -Cﬁ)c- (%)M (30.35)

that 1s, as shown in Pigurz 41, the Oy characteristic curves in the
physical €x,z) plane are at every corresponding point orthogonal to
the [". characteristic curves in the hodograph {u,w) plane. All
these results are the same as in the gas dynamics case where the C4,-
characterlstic curves are referred to as the Mach lines since, as
shown by (30.30), the normal velocity component i{s always the local
speed of sound.

Now, as shown in Figure 41,

) -

. ) r
& n W@ )

——
-

Lle)
dﬂ_ - 3 - - (9 - + T

therefore (30.33) may be written as

(ﬁ)‘h can (6 +o¢) = tan (wr._+_7{_)

(%)c--tm (0 - ox) -tan(bonr--‘F)

Consequently the Riemann invariants are given by

- ) @ Tr ® ] o
R = (0+o~ Wp o =) § = (0 - wp++-?)



This may be simplified by calculating

M, 2 S (d') --13 °°"1[\[;_3—:] - -3 tan'l[ ﬁrl]

from (30.24) and Figure 41 since

rl-—-_‘- | can o |- F_«}-\ l cot@/{")/

or see Courant and Friedrichs [1948] page 266.

Therefore § = (g + tan~! 1 - TT‘ F ran | ol 1 ).
Fé-1

-G +13 un'lvlgi - tan"! [F2-1 )- (e + f(M)]
= - -'L [}2
s = (O tmhlﬁ?:.‘ JIT- f3 )
=(0 -3 tan 1J £ -1'+ can"l/§2 - 1) = [0 - £0)]

vhere f(¥) is given by (30.26) and Table I. Consequently the

liemann invariants are vary simply expressed for the characteristic
curves in the physical plane as
(@-f(M)] = constant on C, (@ + £(M)] » constant or c.. (30.36)
The function £{¥), which was derived from the trace of the
velocity veetor following the characteristics in the hodograph
plane in (30.26), is 3een CO have important physical significance,
and directly provides the Rismann {invariants for the steady two-
dimensional potential flow. In gas dynamics £(F) = £(M) 18 referred
to as the Prandtl-Meyer expansion function and, in the form in which
it is given in Table I, it corresponds to the supersonic free exnan-
sfon about a sharp cormer as shown in Figure 44 for the centered
sinpie wave with a specific heat ratio of a’—- 2. Since this Prandtl-
Meyer function ls so important, let us re-Carive it on another basis

that will further illustrste its physical significance. From the
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fart that £ forms the Riemann invarient, or from the nature of F
or Px zlone, it is evident that u and w cannot be independent
of one another on any such simple characteristic. Consejuently,
1f we write the original potential equation (3G.18) in the

physical plane as
2

(37-1)uxarzgu_y+(§22-1)wy-0

c

and introduce w = w(u) so that
w, = u.yw'(u), uxw'(u) -w, - Opz = uy

we obtain ( ul uy
c v

uv

Y]

- (u) =1 (30.24")

This derivation gives exactly the same result as in (30.24) and
verifies the fact that discontinuities can occur in the first
derivatives normal to a characteristic curve. If we introduce

(30.32) into (30.24) we obtain the equivalent of (30.26)

‘cli(%%) i taiof V%__r (30.37)

1ch again has f£(F) as the general integral because (30.28) shows

that dq _d /C# drF, ] dr (30.38)
[ -0 G n Rl A T
a

However, neither of these methods gives the direct proof that £(F)
provides the Riemsnn invariant. This fact may be provaed directly
by the following derivation which utilizes the velocity component
C;\ along the C, characteristic, and §, =c, from (30.30), noimal
to C4 as shown in Figure 41, so that
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§, ™ qcosx, 9, =c = q sin
d(GA) = (cos oc dq - q sin x d &) = ¢(d@ - dod (30.39)

Az = 1/sin(e+x), My = 1/8in(0- )

since, from (30037)) d*l - E,.i__tl__._ qdeé
co8 O -

Then from (30.28) and (3U.32) we have

2 2 2 2 . X
( +cz)'(o)\;an-rcz)-(g-;—-!-%cz).igzmlx -%ci

2 . 2 2\ _ (.2 2 (30.40)
e® = 1/3(qC - 95) = (g - 1/3 95 )
so that (30.39) may be written
5
(@ - x) + constant -[—M fd -ﬁ)d'(g‘h / Gmax)
1/3(4pax =By, an)’

=73 sin”? (ﬂ,\ 3 tan~l -

qd was 30.41

\& = | oo

This may be finally written in terms of (F) alone by noting from

(30.39) that

h__g_'é__ qcos < 1 Vo1
n

c qffﬂot tan oc {

consequently (30.41) reduces to

,f ! 1
(6(F) - ’?tm'l/ p2-1 )- tan"1 F?-F'=\ + constant] =

fF<
(Q(F) - \/? tan ](\/—_—_‘LI- tan'l \’Fz - 1) = [0-£(F)] = constan’ (30.42)
where f(F) is the same Prandtl-Meyer function as given in (30.26)
and Teble I. Therefore we have proven that the Riemann invariants
are given by (30.36) and (30.26). In acdition to the relation

between f and F in (30.26) it i: sometimes convenient to use one

of the following




f(or) = [ ‘(-B_'cot'l(‘/? ten o) +0O(C - % ] =

- fm) = (7 can P21 1qFE -1 ] (AL (30.28")
3-12 -

Therefore a numerical solution can now be obtaired for the

general problem having both famiiiez of characteristics represent
curved non-simple waves by carrying on a simultaneous finite
difference soiution in the physical (x,z) plane with (30.33), and

in the hodograph (u,w) plane by (30.26), (30.34), and (30.36),
Almost any initisl or boundary value data can »e handled in this
manner as long as the curve on which the data is given is not
coincident with & characteristic curve. The solution cannot be
obtained in the neighborhood of any portion of the boundary value
surve that happens to be tangent to any characteristic curve, beceuse,
as proven by (30.20), the solution is indeterminste for boundary
value data given on & characteristic. It is easily seen by this
finite difference method that the date along a smccth non-character-
1istic curve can only determine the solution inside the quadrilateral
formed by the characteristic curves passing through ite end points
(Figure 43) e.g., see Preiswerk [1938]. This well-kaown behavior

of hyperbolic type partial differential equations is most directly
demonstrated by writing them in their normal or canncnical form by
transforming the coordinates to curvjiinear axes which are the
characteristic curves themselves. For example, Preiswerk {1938]
transforms th: squivalent of (30.23) onto the curvilinear character-

fstic coordinate (., ) system to obtain
'
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£C,) = 1/2 (A44), © = 1/2 (A=)
’Y- - KCA,u) (K + ’}(/“) (30.43)

KCA, /" F (1 - F2/2)
Zh

*"*il-v-v—v-———
Y3(- ré)1/2(p2 1)3/2

This normal or cannonical form is so useful in carrying out the
finite difference method of soiution that the values of K have
2lso been included in Table I. It could be used in the following
type of approximation, as indiceted in Figure 43 where (1, 3) are

known values nnd (2, 4) are to be calculated,

/k_ 3(4 ’ ’k_ X, %y '
A -A Mt /1 (30.43")

(K1+ x3) (ﬁ( }/ (*3 "'j(1)- (j'(z."'j(z)

A A - AD Cig = fo)

Consequently if the data were given on only one characteristic

curve the method would fail since the values must be knowa on both
ciisracteristics, or on the non-characteristic curve s in Figure 43

so that one can also wiite
’}(8-3(1/'\. +ﬁ/(w Mg = &(s)
o - in + &*/un - a(s)

The numerical method of solution by finite differences followins
(30.43') 18 known as the "lattice point method" and replaces the
originel partial differential equation (30.43) by a sot of linear
tlgebraic equations. The other commonly used semi-graphical method
of solving hyperbolic partial differential equations is called the
netvork or "mesh method” and can be illustrated by writing (30.43)
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in the form

- k(X4 K 2
A(IXA) K(Ap% Apd LM (30.43")
AKX ==K+ K AR

The average value at the center of each mesh formed by the
characteristic network is used for the trial and error numerical
calculation of each 4 increment. The increments are drawn tangeat
to the characteristic curves as indicated in Figure 43. The
simultaneous semi-graphical solution must be carried out in the
physical plane &s shown in Figure 43 by using (30.33) and writing
(30.39) and (30.41) in finite difference form.

As a further aid to numerical and graphi:al solutions it is
useful to plot £(F,) from (30.26') or Table I on the hodograph
(u/c*,'w/c*) plane as showm in Pigure 43. The single curve defined
by Table I may be drawn and then rotated by equal increments of 46,
or the construction may be accomplished entirely by grapnical means
a8 indicated in Pigure 43 by rotating the small circle upon the
inner unit circle representing critical flow, while the outer max-
imum circle has a radius of V3’ representing q mex/csx from (30.29).
This geometrical constructiou ylelds f(F,) since it is an epicycloid,
~8 proven by Preiswerk [1938], or Courant and Friedrichs [1948]) page
262, All simple waves muat follow the characteristic epicycloid
in the hodograph plane because simple waves are defined oy (30.37)
wvhich has bean proven to have f(F,) as its integral. It cen be
shown that all stresmlines corresponding to non-simple waves must
lie within the corresponding characteristic epicycloids as iudicated
in Figure 43, since the streamline must have
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v (w)

/ < tan & (30.44)
ALy
/ } const.

unless a finite discontinuity corresponding to a hydraulic jump
(or shock wave in a gas) is formed.

Another useful aid in the hodograph graphical ccnstruction is
the velocity ellipse which is also drawn in Figure 43. Wherever the
velocity vector q touches the curve of the ellipse, it will be found
that the major axis of the ellipse is in the direction of the tan-
gent to the corresponding characteristic (either C+ or C_) in the
physical plsne hecausz, a8 a consequence of (30.29) and (30.32), 1if

we assume that 9 = o¢ then

(&)

2 :
[ %(-‘;‘-—\) + 1] - Fi = [3 - 2(%'—)2]
%

2
= Fy (1 - sin’x) = 3/2 (pi - 1)

) b

or [(u/cl&)2 + (w/c*)zj -1 _[(G/%/c*)z + (.g:) J -

5 - C.(0=9
v [(ﬂ,\ /eg) c )‘/ . (30.45)

3 -+ Cs

This gives the velocity ellipse shown {a Figure 43 with a major
axis of {Eﬂ and a minor axis of unity. The major axis is always
at the Mach angle 0. with respect to the velocity vector q because
we find from (30.28) and (30.32) that when o = @

(57 - () ) - - g
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As in the previous case of unsteady one-dimensional flow
over a f£lat bottor we can obtain very simple solutions for the
case of simple waves., In this case thera is ar anslogy bstween
the (t,x) diagram and the (x,z) diagram, e.g., see Courant and
rriedrichs {1948]. As before the simple wave corresponds to the
(g) characteristics of one family becoming straight lines, a8
in the examples shown in Figurs 44, so that (q, 0, o<, '7 ) are all
constant on the straight line dz/dx = constant in the physical
plane. Therefore any given straight characteristic line has
al.l of its properties determined by f(F,) from (30.26) and e.ach
of the atraight lines in the physical plane maps onto a single point
of the same single characteristic epicycloid in the hodograph plane.
The characteristics of the other family remain curved in the physical
plane and map in & unique continuous manner upon the corresponding
characteristic epicycloid arcs in the hodograph plane. As before,
in a simple wave, thase curved characteristics are nOt requirad
for & nuasrical solution.

Common examples of aimple wave problems are shown in Figure 44,
and they always occur whenever a region of constaur. uniform oroperties
adjoins a region having any variation in its properties, the two
regions always being joired by a straight line physical characteristic
(% = constant) as long as no finite discontinuities,corresponding
to hydraulic jumps or shock waves, have been formed. These finite
discoutinuities correspond to an envelope of the straight character-
{stic lines that must form whenever the boundary surface curves to-
wards the oncoming flow, resulting in a flow compression cr decreazss
of velocity and increase in water depth as indicatad in Figure b,

The solution is no longer single valued at, or downstresam of the
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envelope 20 thie region must be replaced by a hydraulic jump having
a finite discontinuity and non-isentropic flow.

If the local fiow velocity and water depth are required only
o1z the curved boundary itself, then neither family of characteristics
bave to be datemrmined {except as a precaution to verify thet no
finite discontinuities have formed near the boundary due to flow
compression). The solution on the curved boundary itself is given
directly from Table I by simply measuring f(F,) as the value
corresnonding to (see Figure 44)

FIF, (O] = fFyu_ 1 +0 (30.46)

I1£ this expression becomes zero it signifies that the supercritical
flow has been compressed to critical sp2ed and a detached hydraulic
Jimip can occur as in Figure 44,

Whenever disturbance waves enter z.cng both families, either
due to another boundary or by reflection from & hydraulic jump, as
in Figure 42, then the mixed region contains non-simple waves, and
only a numerical solution, similar to the ones discussed in conjunc-
tion with (30.43), can yield the exact solution., However, an
approximate solution for the particuler cases shown in Figure 42 can
be obtained by approximating the curved chgre2cteriztics in the non-
simple region by means of simple wave, straight characteristic lines.
The geomstricsl construction assumes that the curved boundary wall
of the nozzle can beée replaced by a series of straight chord lines
that each have the same magnitude of A @ at every corner as
depicted in Figure 45. At each expansion corner it is assumed that
the centered simple wave (corresponding to a portion of the complete
Prandtl-Meyer expansion, f) can be approximated by a single physicel

characteristic that is the average of the actual expansion fan of
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charscteristics. This is the(dz/dx) straight line that is nocrmel

to the midpoint of the A @ epicycloid arc representing the expansion
angle change at this corner, as shown in Figure 45. Similarly, the
compression corner that turms into the flow is represented by the
single compression simple wave that is normal to the midpoint of the
A ® epicycloid arc representing the compression angle change at

this corner. It will te shown that the angie of thias singlas aveisgs
compression wave is sctuslly she correct limiting value for a weak
hydraulic jwmp. The geometrical construction is carried out in the
manner indicated in Figure 45. Wheneaver & streamline crosses one of
these finite ampiitude comstruction characteristics the flow is
assumed to bend through the A @ asstociated with the finite cornmer
bend which supposedly produced this single finite wave. The
corresponding construction in the hodograph plane transfers to the
epicycloid arc that is normal to the single finite wave in the
physical plane as shown in Figure 45,

Also show: in Figure 45 are the geometric constructions required
for the reflection of these simple finite waves in the physical plane
from either solid boundaries, or constant water depth free boundaries.
In the reflection frcm a solid boundary the original boundary slope
is again attained by the velocity vector after passing through the
reflected wave which bhan the ssme strength for flow deflection as
the original oncoming finite simple wave. In the hodograph plane
the stresaline has gone from cne family of epicycloids to the other,
ending at the same value of 0. The completed solution for the flow
inside & varying width channel having supercritical flow (F >1) s
presented in Figure 42. For additional details and aids on the

graphical comstxucticns see Preiswerk [1938]j. As another example
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in Figure 45, considexr the reflection from a free jet, hydraulic
jump, or any constant water depth free boundsry, which must occur
i{n such a manner that the same wa’er denth 13 maintained after
passing through the reflected wave which 18 not only on the
opposite family of epicycloid arcs, but now must have the negative
algebraic strength of the flow deflection of the original oncoming
wave; consequently the value of A0 18 exactly doubled after passing
through the reflected wave. That is to say, unlike the ordinary
reflection from a solid boundary, the reflection from a constant depth
free boundsry vesults .in the opposite type of wave, an expansion wave

becomes a. compression wave and vice versa.

In conclusion it must be noted that this two dimensional steady
flow analysis is only valid for e flat horizontal bottom as was
already shown by (29.3) for the linearized equations. If the
bottom slope varies then the Riemanr {nvariants do not exist, simple
waves do not occur, and the numerical solution is mucl: more complicated.
However, there is an even more {mportant criterion that must be
satisfied before any of the solutions given 80 far can be applicable.
This is the necessary requirement that all the perturbation quantitiec
involved (u -U, w,4?) nust be sufficiently small so that it is not
necessary to introduce the second order terms from section 31. A
gsatisfactory evaluation of this criterion, at least for F not too
near unity, can be obtained by comparing the solutions cf the non-
linear equaticn (30.17) with the linearized equation (29.23) or
(29.32). As is well-known in gas dynamics, and is apparent by
inspection, (29.23) and (29.32) are not satisfactory for F approaching
unity since additional terms must then be retaired. For example,

on the boundary profile itself, (29.3) for a flat horizontal bottom
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must includs the additional temm 31?2(01‘/0)0“, which corresponds
to the "“transonic approximation" of the gas dynamic equation (with
& specific heat ratio sf h"'- 2), in the limit as F approaches unity.
However, for the solution of the steady flow cverywhere about a

tvo-dimensional profile it mey be necessary to use
(L-t29_+6,.] =rq3l2g _ +2%
) Px T Pee 7 Ixx +220,.) (30.47)

since {29.29) indicates that far from the prsiile (w/U) =
= (§,/U) ~ 1/z whereas (Eﬁg)-(ﬂx/U)N 1/22,

In any cass any radical increase in the order of magnitude of any
perturbacion term lumediately indicates that the second crder
terms discussed in section 31 must be introduced, since the non-
linear equation (28.1) and all the preceding results are based

only on the first oxder terms of the shallow-water theory.
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SO“EF'. One-DPimensional, Steady, Open Channel Hydraulics and
the Hydraulic Jump.

The relations given in equations (30.27), (30.28) and (29.29),
and shown in Flgure 42, can be used in what is commonly known
as the steady "one-dimensional'' hydraulics of open channel flow.
Here we assume that even though the channel width b{x) 1is varying,
3till the values of q(x) and 47(x) do not depend upcn z and therefore
do not vary on any given cross-section. In conjunction with the
steady "one-dimensicnal” concept it is necessary that w <=0 =@,
Consequently the basic equations to be used for a riat horizontal
bottom are given by q(x) = u(x) in (30.27), (30.28) and (20.29),
and, in addition, by the '"one-dimensional' coﬁtinuity equation

b(x)d(x)u(x) = A(x)u(x) = Q = (H%ﬁ%%ﬂﬁ). constant (30.48)

where, foom Figure 42, d(x) = [ho + 7 (x)] = [A(x)/E(x)].

The validity of the ''one-dimensional'' asaumrpiion cen be conaid-
erably in error 1if b'(x) is large since it is obvious that in this
case w or @ cannot be small. However, the "one-dimensional"
approximation gives surprisingly good numerical values, even in
supercritical flow if the channel is well designed as in Figure 42 so
as to maintain the flow as uniform as rossible. However in super-
critical flow the velocity over any cross-section remains uniform
only near the design Froude number (F). Preiswerk [1938] gives
the calculated and measured water depths in a Laval-type nozzle
(the samne one as duplicated in Figure 42) at various supercritical
Froude numbers (F > 1). His results indicate that ''one-dimensional"
hydraulics give a satisfactory approxinatioﬂf probably having an
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error less than 10 per cent, even for critical or supercritical flow.,
This method should be especially useful for subcritical filow since
the more exact numerical solution is now very difficult to obtain
because the zimple method of characteristics is no longer applicable.

The most useful, and obviously the most accurate, application of
"one-dimensional" hydraulics is to the constant wi:th rectangular
cross-section open channel flow. In this application the friction
effect of the vertical channel walls generally has a greater effect
on the variation of q(x,y,z) than would any of the more exact terms
of the complete first order shallow water equations(28.1), which
hava been derived on the assumption of negligible viscosity effects,
Consequently the "one-dimensional' assumption that q = u(x) provides
a satisfactory approximation for the constant width (b), rectangular
crcss~section, vertical wall channel having A(x) = bd(x). Even
more important, this open channel flow analysis may be further
generalized, with but little sdditional difficulty, to apply to a
bottom slope varying also with x. The '"one-dimensionali' continuity
equation (30.48) then becomes
u(x)d(x) = 3 = constant (30.49)

where d(x) is measured vertically from the varying bottom as shown
in Figure 46. The generzlization of the Bermsulll equation (30,27)
to include extraneous head losses (h.L) other than those due to

friction, end local variations in the bottom contour y(x) as shown

in Pigure 46, may be written as
(g;fcmlgm) - KRa BOCOIS | (norers) - [d(x) + Eg-gﬁ‘)- + y(x)+hy (x)] =
- [d(x) + {%Q{%— + y(x) + by (x)] = constant (30.50)

This assumes that in steady flow the work of gravity, through the
known avérage slops of the fiow, is wholly epeni ou overcomiang the
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£rictional resistance.
Another relation, that is neceszavy for calculating the sudden
additional head loss h; in hydraulic jumps or other discontinuous
£low phenomengn,.i’s'&i.veg oy the impulse-momentum relation, see

Kelvin [1886], Raylidgh :{1914], ox Bakhmeteff [1932],

e 3
o ) - (25 )+ 172 8700 + 4GP -

2
- 11/2 gd? () + $§3- ) (30.51)

which is constant across the hydraulic jump over a flat horizontal
bottom as shown in Figure 40,

Equation (30.50) with zero additional head loss (11.L =0),
gives che "one-dimensional" solution for the open channel flow that
has no finite discontinuities in the flow itself, and either has the
hydraulic frictional resistance exactly balanced by the given
average slope for steady flow (so if y = 0 the surface slope 18
parallel to the bottom), or the hydraulic frictional resistance can
be approximated by the Ché’zy formula for the case of varying open
channel flow, see Bakhmeteff {1932] or Stoker [1957]. A useiul
concept for nearly all solutions is the definitici oi the critical
depth d,, which corresponds to our previous definition of critical
flow velocity in (30.28), that is, with w= 0 = @ we assume that

(5o
u = c va /4 s a2 %, F =]1=PF
R . 3 % (30.52)
d =2/3n, =Sk QW2 1/3
i 0 " | ]
g 8
The last relation for d, can be obiained either directly from

(30.27), or by substituting the expression u = ‘f(2/3)gho' into
(30.50) with y and h'[. both zero. Also from (30.29) we have
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2-2-19.133}2.4*3 |

o~ Sl i) (30.53)
As an cxample, if we a2pply eguations (30.50) and (30.52) to

datermine the flow relations between stations (1) and (2) in

Figurs .46a we obtain, since h‘L is generally negligible for a

smooth variation in y,,

é) + 1/2 ( 7 [(3}() +1/2 ( )2]- (%%)

as a satisfactoxy approximation from "one-dimensional® hydraulics

r“"‘ﬁ

at least as long as (yzld*) is sufficiently small. It is interest-

ing to note that here is another resemblance to gas dynamics

behaviour since (ZZ"'dZ) ( )>1. for Fy < 1
/’2+d7) (Ei./(l for F{ > 1

As another example, if we consider the hydraulic jump show:
in Figure 46b, now we find that a solution can oanly be obtained by
using the impulse-momentum relation (30.51), thereby proving that
the discontinuous change occurring in a hydraulic jump must result
in a head loss. If the bottom slope is negligibla, as indicated
in Figure 46b, then the impulse-momentum relaticn (30.51) may be
written with (Q/b) = (u; dy) = (1.2 d2) as first givcn by Rayleigh(1914]

(%41”1"1 (i“’z mg)_] i sy + S ]
SR CT L (‘f.&l_ ] L @a+g (30.54)

‘()
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or, if we let the actual rise in water level be a = (da-dy)

Fi =2l ~[1+ 3/2 & y2y 1/2 30.55
1 e [ /(ﬁI)+1/2(aI)l ( )
where

- — 2 ! 21
2ya.52. — ]l = -
(1 + d1) 3 1/2[Y1 -+ e-(g-ﬁ-%l 1] 1/2[1/1 + 8F) - 1]  (30.56)

Similarly (30.54) can also be solved for

2
2 )2 Y d d 2 d; .3
F, = 900 . %) - 2 a + ?1% ) = F @) (30.57)

d
: 2

Equations (30.54) and (30.57) may be multiplied together to

yield d1+d
uu, = g(L182; | c: ['_3._ ][1 +Y1 + 8> ce? e (30.58)
*

C
2+ F < &4 1e” 2%

The last inequality in (30.58) is obtained from (30.50) and (30.52)
oy noting that in any finite hydraulic jump the head loss must also
be finite, so hy = (h°1- hoz)‘; 0 anag (30.50) must be written as

2, ol
d1';§ ’ﬂ§+;£\%)2+(h° " By
dy
h = (hg -hz)"‘},fz (1- 2) d
(1+ 2)
-'}"Ff [Vl-l-&Fi-l] l"gl-) dl (30.59)
1(1"'3'231)..

80 (30.52) and (30.59) give the total head ratio, and therefore <he

critical speed ratio, as hy, ¢, 7 hL d
—--l----h - _1)-( -E._) g(_;0 60)
.

01 cl* o1

2-
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((V1+arf‘ - 13 + 4R

2 1
v

Consequently there is no direct analogy between finite

<1 (30.60)
continued

- 1% @+ Fi)

hydraulic jumps and gas dynamic shock waves, as pointed ont by
Preiswerk [1938], since in gas dynamics the well-known Prandtl
relation for normal shock waves gives uyu, = c:, anag c x is
constant through the shock wave, e.g. see Courant and Friedrichs
(1948] page 146. The equations are similar only for the limiting
case as the hydraulic jump vanishes so F; = Fp = 1, dp = dl’
and h, 2 - h°1' However this limiting process corresponds to the
{sentropic, potential flow case where therc is an analogy for
small perturbations over a flat horizontal bottom, as previously
discussed. Alszo, as indicated by (30.59) the head loss and variation
in ¢ o could be neglected until the third order terms become impor-
tant, so for F, near unity the first and second order terms of the
hydraulic jump relations correspond to the gas dynamic shock wave
relatione having a specific heat ratio of 3" « 2, However, this is
identical to the known fact that weak shock waves may be considered
isentropic to the third order of approximationm, consequently the
hydraulic analogy to compressible gas dynamics exists only for small
perturbations in potential flow.

There ig no direct analogy between the finite hydraulic jump
and the gas dynamic shock wave because the hydrsuli: juap has a
head ioss that must be included in the specific energy equatiom
(30.50). This head loss results in a loss of Kinetic energy that is

no longer available as flow energy since it is converted into an
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insignificant temperature rise in the water itseif, In the gas
dynamics energy equation the entropy increase through a shock
wave of course corresponds to a loss of Kinetic energy but this
18 converted, through th¢ increase of the temperature of the gas,
into an adiabatic enthalpy increase that maintains comstant fliow
energy through the shock wave, e.g., see Courant and Friedrichs
[1348] page 125. The most unusual effect of this lecss in flow
energy (or hy) in the hydraulic jmp is revealed in (30.58) which
shows that the flow velocity downstream of a hydraulic jump is
always less than the corresponding gas dynamics case, which maintains
c, constant 8o uju, = ci . For example, in the gas dynamic case
when F1 -0, then u]_/t:‘,Ir *Y?(for X‘—- 2), and thereiore
uzlc*—) IIY?. However in a hydraulic jump (30,58) shows that
“2/‘3* —» 0 wnen Fl-‘b oo ( or ullc*-Pﬁ).

The experimental investigations by Bakhmeteff [1932] have shown
that the hydraulic jumps in a horizontal rectangular channel are in
excellent agreemen’. with the predictions of the "one~-dimensional"
hydraulic equations (30.54) through (30.60). Bakhmeteff found that
depth increases as high as 10(d1) were in excellent sgresement with
(30.56). However, he found that for oncoming Froude numbers less
than {3, (L.e., F; <[3) the profile of the normal hyd<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>